view in publisher's site

An efficient feature optimization for wetland mapping by synergistic use of SAR intensity, interferometry, and polarimetry data

Highlights•Identifying the improved discrimination by the synergistic use of different SAR features.•Optimizing both the type and number of input features.•Comparing the performance of SVM and RF algorithms for complex wetland classification.AbstractWetlands are home to a great variety of flora and fauna species and provide several unique environmental services. Knowledge of wetland species distribution is critical for sustainable management and resource assessment. In this study, multi-temporal single- and full-polarized RADARSAT-2 and single-polarized TerraSAR-X data were applied to characterize the wetland extent of a test site located in the north east of Newfoundland and Labrador, Canada. The accuracy and information content of wetland maps using remote sensing data depend on several factors, such as the type of data, input features, classification algorithms, and ecological characteristics of wetland classes. Most previous wetland studies examined the efficiency of one or two feature types, including intensity and polarimetry. Fewer investigations have examined the potential of interferometric coherence for wetland mapping. Thus, we evaluated the efficiency of using multiple feature types, including intensity, interferometric coherence, and polarimetric scattering for wetland mapping in multiple classification scenarios. An ensemble classifier, namely Random Forest (RF), and a kernel-based Support Vector Machine (SVM) were also used to determine the effect of the classifier. In all classification scenarios, SVM outperformed RF by 1.5–5%. The classification results demonstrated that the intensity features had a higher accuracy relative to coherence and polarimetric features. However, an inclusion of all feature types improved the classification accuracy for both RF and SVM classifiers. We also optimized the type and number of input features using an integration of RF variable importance and Spearman’s rank-order correlation. The results of this analysis found that, of 81 input features, 22 were the most important uncorrelated features for classification. An overall classification accuracy of 85.4% was achieved by incorporating these 22 important uncorrelated features based on the proposed classification framework.

بهینه‌سازی ویژگی کارآمد برای نقشه‌برداری تالاب از طریق استفاده synergistic از شدت SAR، تداخل سنجی، و داده‌های polarimetry

ترجمه شده با


پر ارجاع‌ترین مقالات مرتبط:

  • مقاله Management, Monitoring, Policy and Law
  • ترجمه مقاله Management, Monitoring, Policy and Law
  • مقاله مدیریت، نظارت، سیاست و قانون
  • ترجمه مقاله مدیریت، نظارت، سیاست و قانون
  • مقاله Earth-Surface Processes
  • ترجمه مقاله Earth-Surface Processes
  • مقاله فرایندهای سطح زمین
  • ترجمه مقاله فرایندهای سطح زمین
  • مقاله Global and Planetary Change
  • ترجمه مقاله Global and Planetary Change
  • مقاله تغییر جهانی و سیاره‌ای
  • ترجمه مقاله تغییر جهانی و سیاره‌ای
  • مقاله Computers in Earth Sciences
  • ترجمه مقاله Computers in Earth Sciences
  • مقاله کامپیوتر در علوم زمین
  • ترجمه مقاله کامپیوتر در علوم زمین
سفارش ترجمه مقاله و کتاب - شروع کنید

با استفاده از افزونه دانلود فایرفاکس چکیده مقالات به صورت خودکار تشخیص داده شده و دکمه دانلود فری‌پیپر در صفحه چکیده نمایش داده می شود.