view in publisher's site

Projection sparse principal component analysis: An efficient least squares method

We propose a new sparse principal component analysis (SPCA) method in which the solutions are obtained by projecting the full cardinality principal components onto subsets of variables. The resulting components are guaranteed to explain a given proportion of variance. The computation of these solutions is very efficient. The proposed method compares well with the optimal least squares sparse components. We show that other SPCA methods fail to identify the best sparse approximations of the principal components and explain less variance than our solutions. We illustrate and compare our method with others with extensive simulations and with the analysis of the computational results for nine datasets of increasing dimensions up to 16,000 variables.


Download PDF سفارش ترجمه این مقاله این مقاله را خودتان با کمک ترجمه کنید
سفارش ترجمه مقاله و کتاب - شروع کنید

95/12/18 - با استفاده از افزونه دانلود فایرفاکس و کروم٬ چکیده مقالات به صورت خودکار تشخیص داده شده و دکمه دانلود فری‌پیپر در صفحه چکیده نمایش داده می شود.