view in publisher's site

A non-fuzzy interferometric phase estimation algorithm based on modified Fully Convolutional Network

Highlights•Phase segmentation method based on modified Fully Convolutional Networks (FCN)•Automatic annotation of layover region in the interferogram.•Phase unwrapping strategy based on interferogram segmentation.AbstractClassical phase unwrapping methods suffer from layover regions where phases are discontinuous and layover residues occur. To overcome this weakness, we proposed an interferogram-segmentation-assisted phase estimation method to minimize the influence of layovers. The modified Fully Convolutional Networks (FCN) is first applied to classify interferogram pixels into normal pixels and layover residues. By means of only taking normal pixels as the input of phase filtering and unwrapping steps, the optimized non-fuzzy phase is obtained. Results on simulated and real data verify that the proposed algorithm can effectively avoid the error propagation of residues in layovers, and significantly improve the precision of phase unwrapping.

یک الگوریتم تخمین فازی non فازی مبتنی بر شبکه کاملا convolutional اصلاح‌شده

ترجمه شده با

Download PDF سفارش ترجمه این مقاله این مقاله را خودتان با کمک ترجمه کنید
سفارش ترجمه مقاله و کتاب - شروع کنید

95/12/18 - با استفاده از افزونه دانلود فایرفاکس و کروم٬ چکیده مقالات به صورت خودکار تشخیص داده شده و دکمه دانلود فری‌پیپر در صفحه چکیده نمایش داده می شود.