view in publisher's site

A review on analysis methods, source identification, and cancer risk evaluation of atmospheric polycyclic aromatic hydrocarbons

Highlights•PAHs are human carcinogenic and need to be strictly regulated.•The accuracy of DRs and PCA is widely criticized.•PMF and CSIA can provide accurate PAH source analysis.•CSIA requires fast and cost-effective sample extract purification.•A realistic PAHs health risk can be estimated using the ILCR model.AbstractPolycyclic aromatic hydrocarbons (PAHs) have gained attention because of their environmental persistence and effects on ecosystems, animals, and human health. They are mutagenic, carcinogenic, and teratogenic. The review provides background knowledge about their sources, metabolism, temporal variations, and size distribution in atmospheric particulate matter. The review article briefly discusses the analytical methods suitable for the extraction, characterization, and quantification of nonpolar and polar PAHs, addressing the challenges. Herein, we discussed the molecular diagnostic ratios (DRs), stable carbon isotopic analysis (SCIA), and receptor models, with much emphasis on the positive matrix factorization (PMF) model, for apportioning PAH sources. Among which, DRs and PCA identified as the most widely employed method, but their accuracy for PAH source identification has received global criticism. Therefore, the review recommends compound-specific isotopic analysis (CSIA) and PMF as the best alternative methods to provide detailed qualitative and quantitative source analysis. The compound-specific isotopic signatures are not affected by environmental degradation and are considered promising for apportioning PAH sources. However, isotopic fractions of co-eluted compounds like polar PAHs and aliphatic hydrocarbons make the PAHs isotopic fractions interpretation difficult. The interference of unresolved complex mixtures is a limitation to the application of CSIA for PAH source apportionment. Hence, for CSIA to further support PAH source apportionment, fast and cost-effective purification techniques with no isotopic fractionation effects are highly desirable. The present review explains the concept of stable carbon isotopic analysis (SCIA) relevant to PAH source analysis, identifying the techniques suitable for sample extract purification. We demonstrate how the source apportioned PAHs can be applied in assessing the health risk of PAHs using the incremental lifetime cancer risk (ILCR) model, and in doing so, we identify the key factors that could undermine the accuracy of the ILCR and research gaps that need further investigation.Graphical abstractDownload : Download high-res image (153KB)Download : Download full-size image


پر ارجاع‌ترین مقالات مرتبط:

  • مقاله Waste Management and Disposal
  • ترجمه مقاله Waste Management and Disposal
  • مقاله مدیریت پسماند و دفع زباله
  • ترجمه مقاله مدیریت پسماند و دفع زباله
  • مقاله Pollution
  • ترجمه مقاله Pollution
  • مقاله آلودگی
  • ترجمه مقاله آلودگی
  • مقاله Environmental Chemistry
  • ترجمه مقاله Environmental Chemistry
  • مقاله شیمی محیط‌‌ زیست
  • ترجمه مقاله شیمی محیط‌‌ زیست
  • مقاله Environmental Engineering
  • ترجمه مقاله Environmental Engineering
  • مقاله مهندسی محیط‌ زیست
  • ترجمه مقاله مهندسی محیط‌ زیست
سفارش ترجمه مقاله و کتاب - شروع کنید

با استفاده از افزونه دانلود فایرفاکس چکیده مقالات به صورت خودکار تشخیص داده شده و دکمه دانلود فری‌پیپر در صفحه چکیده نمایش داده می شود.