view in publisher's site

Application of SEBAL Model for Mapping Evapotranspiration and Estimating Surface Energy Fluxes in South-Central Nebraska

Knowledge of spatiotemporal distribution of evapotranspiration (ET) on large scales, as quantified by satellite remote sensing techniques, can provide important information on a variety of water resources issues such as evaluating water distributions, water use by different land surfaces, water allocations, water rights, consumptive water use and planning, and better management of ground and surface water resources. The objective of this study was to assess the operational characteristics and performance of the surface energy balance algorithm for land (SEBAL) model for estimating crop ET ( ET c ) and other energy balance components, and mapping spatial distribution and seasonal variation of ET c on a large scale in south-central Nebraska climatic conditions. A total of seven cloud free Landsat Thematic Mapper (TM)/Enhanced Thematic Mapper (ETM) satellite images (May 19, June 20, July 22, August 7, September 8, September 16, and October 18, 2005) were processed to generate ET c maps and estimate surface energy fluxes. Predictions from the SEBAL model were compared with the Bowen ratio energy balance system (BREBS)-measured fluxes on an instantaneous and daily basis. The ET c maps generated by the model for seven Landsat overpass days showed a very good progression of ET c with time during the growing season in 2005 as the surface conditions continuously changed. The predictions for some surface energy fluxes were very good. Overall, a very good correlation was found between the BREBS-measured and SEBAL-estimated ET c with a good r 2 of 0.73 and a root-mean-square difference (RMSD) of 1.04 mm day − 1 . The estimated ET c was within 5% of the measured ET c . The model was able to predict growing season (from emergence to physiological maturity) cumulative daily corn ET reasonable well within 5% of the BREBS-measured values. The model overestimated the surface albedo by about 26% with a RMSD of 0.05. The difference between the measured and predicted albedo was the greatest on May 19, early in the growing season before the full canopy cover. The second largest difference between the two albedo values was on October 18, a day after harvest. The model significantly under predicted soil heat flux with a large RMSD of 80 W m − 2 and most of the underestimation occurred in the late growing season. Local calibration of soil heat flux significantly improved the agreement between the measured and predicted values. Furthermore, the sensible heat flux was underestimated between September 20 (after physiological maturity) and October 18 (a day after harvest). While our results showed that SEBAL can be a viable tool for generating ET c maps to assess and quantify spatiotemporal distribution of ET on large scales as well as estimating surface energy fluxes, its operational assessment for estimating sensible heat flux and ET c , especially during the drier periods for different surfaces, needs further development.

کاربرد مدل sebal برای نقشه‌برداری evapotranspiration و تخمین fluxes انرژی سطحی در نشریه | Nebraska در آمریکای جنوبی - مرکزی |، شماره ۱۳۴، شماره ۳

ترجمه شده با

پر ارجاع‌ترین مقالات مرتبط:

  • مقاله Water Science and Technology
  • ترجمه مقاله Water Science and Technology
  • مقاله علوم و فن‌آوری آب
  • ترجمه مقاله علوم و فن‌آوری آب
  • مقاله Civil and Structural Engineering
  • ترجمه مقاله Civil and Structural Engineering
  • مقاله مهندسی عمران و طراحی ساختار
  • ترجمه مقاله مهندسی عمران و طراحی ساختار
  • مقاله Agricultural and Biological Sciences (miscellaneous)
  • ترجمه مقاله Agricultural and Biological Sciences (miscellaneous)
  • مقاله علوم کشاورزی و زیستی (متفرقه)
  • ترجمه مقاله علوم کشاورزی و زیستی (متفرقه)
سفارش ترجمه مقاله و کتاب - شروع کنید

95/12/18 - با استفاده از افزونه دانلود فایرفاکس و کروم٬ چکیده مقالات به صورت خودکار تشخیص داده شده و دکمه دانلود فری‌پیپر در صفحه چکیده نمایش داده می شود.