view in publisher's site

Application of Artificial Intelligence to Estimate Daily Pan Evaporation Using Available and Estimated Climatic Data in the Khozestan Province (South Western Iran)

Estimation of evaporation, a major component of the hydrologic cycle, is required for a variety of purposes in water resources development and management. This paper investigates the abilities of genetic programming (GP) to improve the accuracy of daily evaporation estimation. In the first part of the study, different GP models, comprising various combinations of daily climatic variables, namely, air temperature, sunshine hours, wind speed, and relative humidity, were developed to evaluate the degree of the effect of each variable on daily pan evaporation. A dynamic modeling of evaporation was also performed, with the current climatic variables and one of the previous variables, to evaluate the effect of their time series on evaporation. In the second part of the study, the estimated solar radiation data were used as input vectors instead of recorded sunshine values. Statistics such as correlation coefficient (R), root mean square error (RMSE), coefficient of residual mass (CRM) and scatter index (SI) were used to measure the performance of models. Tthe dynamic model approach was shown to give the best results with relatively fewer errors and higher correlations. To assess the ability of GP relative to the neuro-fuzzy (NF) and artificial neural networks (ANN), several NF and ANN models were developed by using the same data set. The obtained results showed the superiority of GP to the NF and ANN approaches. The Stephen-Stewart and Christiansen methods were also considered for comparison. The results indicated that the proposed GP model performed quite well in modeling evaporation processes from the available climatic data. The results also showed that the estimated solar radiation data can be applied successfully instead of the recorded sunshine data.

کاربرد اطلاعات مصنوعی برای برآورد روزانه پان Evaporation با استفاده از موجود و تخمین زده داده‌های Climatic در استان خوزستان (جنوب غربی ایران)

ترجمه شده با


پر ارجاع‌ترین مقالات مرتبط:

  • مقاله Water Science and Technology
  • ترجمه مقاله Water Science and Technology
  • مقاله علوم و فن‌آوری آب
  • ترجمه مقاله علوم و فن‌آوری آب
  • مقاله Civil and Structural Engineering
  • ترجمه مقاله Civil and Structural Engineering
  • مقاله مهندسی عمران و طراحی ساختار
  • ترجمه مقاله مهندسی عمران و طراحی ساختار
  • مقاله Agricultural and Biological Sciences (miscellaneous)
  • ترجمه مقاله Agricultural and Biological Sciences (miscellaneous)
  • مقاله علوم کشاورزی و زیستی (متفرقه)
  • ترجمه مقاله علوم کشاورزی و زیستی (متفرقه)
سفارش ترجمه مقاله و کتاب - شروع کنید

95/12/18 - با استفاده از افزونه دانلود فایرفاکس و کروم٬ چکیده مقالات به صورت خودکار تشخیص داده شده و دکمه دانلود فری‌پیپر در صفحه چکیده نمایش داده می شود.