view in publisher's site

Robust adaptive control of strict-feedback nonlinear systems with unmodelled dynamics and time-varying delays

ABSTRACTThis paper presents a novel robust adaptive neural control scheme which can be taken as a robustification of the adaptive backstepping design. The considered class of uncertainties contains unknown non-symmetric dead-zone inputs, time-varying delay uncertainties, unknown dynamic disturbances and unmodelled dynamics. The radial basis function neural networks (RBFNNs) are employed to approximate the unknown nonlinear functions obtained by Young’s inequality. By constructing exponential Lyapunov-Krasovskii functionals, the upper bound functions of the time-varying delay uncertainties are compensated for. Using Young’s inequality and RBFNNs, the assumptions with respect to unmodelled dynamics are relaxed. It is demonstrated that the proposed controller guarantees that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded and the tracking error eventually converges to a neighbourhood of zero.

کنترل تطبیقی قوی سیستم‌های غیرخطی با فیدبک دقیق و تاخیرات زمانی و تاخیرات زمانی

ترجمه شده با

سفارش ترجمه مقاله و کتاب - شروع کنید

با استفاده از افزونه دانلود فایرفاکس چکیده مقالات به صورت خودکار تشخیص داده شده و دکمه دانلود فری‌پیپر در صفحه چکیده نمایش داده می شود.