view in publisher's site

Machine learning in acoustics: Theory and applications

Acoustic data provide scientific and engineering insights in fields ranging from biology and communications to ocean and Earth science. We survey the recent advances and transformative potential of machine learning (ML), including deep learning, in the field of acoustics. ML is a broad family of techniques, which are often based in statistics, for automatically detecting and utilizing patterns in data. Relative to conventional acoustics and signal processing, ML is data-driven. Given sufficient training data, ML can discover complex relationships between features and desired labels or actions, or between features themselves. With large volumes of training data, ML can discover models describing complex acoustic phenomena such as human speech and reverberation. ML in acoustics is rapidly developing with compelling results and significant future promise. We first introduce ML, then highlight ML developments in four acoustics research areas: source localization in speech processing, source localization in ocean acoustics, bioacoustics, and environmental sounds in everyday scenes.

یادگیری ماشینی در آکوستیک: تئوری و کاربردها

ترجمه شده با


پر ارجاع‌ترین مقالات مرتبط:

  • مقاله Acoustics and Ultrasonics
  • ترجمه مقاله Acoustics and Ultrasonics
  • مقاله آکوستیک و فراصوت
  • ترجمه مقاله آکوستیک و فراصوت
  • مقاله Arts and Humanities (miscellaneous)
  • ترجمه مقاله Arts and Humanities (miscellaneous)
  • مقاله هنر و علوم انسانی (متفرقه)
  • ترجمه مقاله هنر و علوم انسانی (متفرقه)
سفارش ترجمه مقاله و کتاب - شروع کنید

با استفاده از افزونه دانلود فایرفاکس چکیده مقالات به صورت خودکار تشخیص داده شده و دکمه دانلود فری‌پیپر در صفحه چکیده نمایش داده می شود.