view in publisher's site

22 Whole-brain functional connectivity based on the graph theory analysiisn Psychogenic Non-Epileptic Seizures (PNES)

ObjectiveDespite being the subject of many studies over the past two decades, mechanisms underlying psychogenic non-epileptic seizures (PNES) are still poorly understood. We tried to address this issue by utilizing brain functional connectivity analysis to identify brain regions with abnormal activities in patients with PNES. In a case-control study, we performed graph based network analysis, a robust technique that determines the organization of brain connectivity and characterizes topological properties of the brain networks.MethodsTwelve individuals with PNES and twenty-one healthy control subjects were examined. Resting state functional magnetic resonance imaging (rsfMRI) was acquired. All subjects were asked to keep their eyes open during the scanning process. The rsfMRI analysis consisted of pre-processing, extracting the functional connectivity matrix (FCM) based on the AAL atlas, threshold for binary FCM, constructing a graph network from FCM and extracting graph features, and finally statistical analysis. For all cortical and subcortical regions of the AAL atlas, we calculated measures of ‘degree,’ which is one of the features of the graph theory. Results: Our results revealed that, as compared to the healthy control subjects, patients with PNES had a significantly lower degree in some brain regions including their left and right insula (INS), right Putamen (PUT), left and right Supramarginal gyrus (SMG), right Middle occipital gyrus (MOG), and left and right Rolandic operculum (ROL). In contrast, degree was significantly greater in two regions [i.e., right Caudate (CAU) and left Inferior frontal gyrus orbital part (ORBinf)] in patients with PNES compared to that in controls.ConclusionOur findings suggest that functional connectivity of several major brain regions are different in patients with PNES compared with that in healthy individuals. While there is hypoactivity in regions important in perception, motor control, self- awareness, and cognitive functioning (e.g., insula) and also movement regulation (e.g., putamen), there is hyperactivity in areas involved in feedback processing (i.e., using information from past experiences to influence future actions and decisions) (e.g., caudate) in patients with PNES. The observation that individuals with PNES suffer from a wide range of abnormal activities in functional connectivity of their brain networks is consistent with the fact that PNES occur in a heterogeneous patient population; no single mechanism or contributing factor could explain PNES in all patients.

[ ۲۲ ] ارتباط عملکردی مغز کامل براساس تئوری گراف، تحلیل محرک‌های غیر انگلی روانی (PNES)

ترجمه شده با


پر ارجاع‌ترین مقالات مرتبط:

  • مقاله Clinical Neurology
  • ترجمه مقاله Clinical Neurology
  • مقاله عصب‌شناسی بالینی
  • ترجمه مقاله عصب‌شناسی بالینی
  • مقاله Psychiatry and Mental health
  • ترجمه مقاله Psychiatry and Mental health
  • مقاله روان‌پزشکی و سلامت روان
  • ترجمه مقاله روان‌پزشکی و سلامت روان
  • مقاله Surgery
  • ترجمه مقاله Surgery
  • مقاله جراحی
  • ترجمه مقاله جراحی
سفارش ترجمه مقاله و کتاب - شروع کنید

95/12/18 - با استفاده از افزونه دانلود فایرفاکس و کروم٬ چکیده مقالات به صورت خودکار تشخیص داده شده و دکمه دانلود فری‌پیپر در صفحه چکیده نمایش داده می شود.