view in publisher's site

Nil-Clean Rings with Involution

A [Formula: see text]-ring [Formula: see text] is called a nil [Formula: see text]-clean ring if every element of [Formula: see text] is a sum of a projection and a nilpotent. Nil [Formula: see text]-clean rings are the [Formula: see text]-version of nil-clean rings introduced by Diesl. This paper is about the nil [Formula: see text]-clean property of rings with emphasis on matrix rings. We show that a [Formula: see text]-ring [Formula: see text] is nil [Formula: see text]-clean if and only if [Formula: see text] is nil and [Formula: see text] is nil [Formula: see text]-clean. For a 2-primal [Formula: see text]-ring [Formula: see text], with the induced involution given by[Formula: see text], the nil [Formula: see text]-clean property of [Formula: see text] is completely reduced to that of [Formula: see text]. Consequently, [Formula: see text] is not a nil [Formula: see text]-clean ring for [Formula: see text], and [Formula: see text] is a nil [Formula: see text]-clean ring if and only if [Formula: see text] is nil, [Formula: see text]is a Boolean ring and [Formula: see text] for all [Formula: see text].


پر ارجاع‌ترین مقالات مرتبط:

  • مقاله Applied Mathematics
  • ترجمه مقاله Applied Mathematics
  • مقاله ریاضیات کاربردی
  • ترجمه مقاله ریاضیات کاربردی
  • مقاله Algebra and Number Theory
  • ترجمه مقاله Algebra and Number Theory
  • مقاله جبر و نظریه اعداد
  • ترجمه مقاله جبر و نظریه اعداد
سفارش ترجمه مقاله و کتاب - شروع کنید

با استفاده از افزونه دانلود فایرفاکس چکیده مقالات به صورت خودکار تشخیص داده شده و دکمه دانلود فری‌پیپر در صفحه چکیده نمایش داده می شود.